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Abstract

This is the second paper in a series started in [25]. Let F be the category with the set of ob-
jects N and morphisms being the functions between the standard finite sets of the corresponding
cardinalities. Let Jf : F → Sets be the obvious functor from this category to the category of
sets. In this paper we construct, for any relative monad RR on Jf and a left module LM over
RR, a C-system C(RR,LM) and explicitly compute the action of the four B-system operations
on its B-sets. In the following paper it is used to provide a rigorous mathematical approach to
the construction of the C-systems underlying the term models of a wide class of dependent type
theories.
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1 Introduction

The first few steps in all approaches to the semantics of dependent type theories remain insufficiently
understood. The constructions which have been worked out in detail in the case of a few particular
type systems by dedicated authors are being extended to the wide variety of type systems under
consideration today by analogy. This is not acceptable in mathematics. Instead we should be
able to obtain the required results for new type systems by specialization of general theorems and
constructions formulated for abstract objects the instances of which combine together to produce
a given type system.

An approach that follows this general philosophy was outlined in [17]. In this approach the con-
nection between the type theories, which belong to the concrete world of logic and programming,
and abstract mathematical concepts such as sets or homotopy types is constructed through the
intermediary of C-systems.

C-systems were introduced in [5] (see also [6]) under the name “contextual categories”. A modified
axiomatics of C-systems and the construction of new C-systems as sub-objects and regular quotients
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of the existing ones in a way convenient for use in type-theoretic applications are considered in [25].
A C-system equipped with additional operations corresponding to the inference rules of a type
theory is called a model or a C-system model of these rules or of this type theory. There are
other classes of objects on which one can define operations corresponding to inference rules of type
theories most importantly categories with families or CwFs. They lead to other classes of models.

In the approach of [17], in order to provide a mathematical representation (semantics) for a type
theory one constructs two C-systems. One C-system, which we will call the proximate or term
C-system of a type theory, is constructed from formulas of the type theory using, in particular, the
main construction of the present paper. The second C-system is constructed from the category of
abstract mathematical objects using the results of [19]. Both C-systems are then equipped with
additional operations corresponding to the inference rules of the type theory making them into
models of type theory. The model whose underlying C-system is the term C-system is called the
term model.

A crucial component of this approach is the expected result that for a particular class of the
inference rules the term model is an initial object in the category of models. This is known as
the Initiality Conjecture. In the case of the pure Calculus of Constructions with a “decorated”
application operation this conjecture was proved in 1988 by Thomas Streicher [15]. The problem
of finding an appropriate formulation of the general version of the conjecture and of proving this
general version will be the subject of future work.

For such inference rules, then, there are unique homomorphisms from the term C-systems to the
abstract C-systems that are compatible with the corresponding systems of operations. Such ho-
momorphisms are called representations of the type theory. More generally, any functor from the
category underlying the term C-system of the type theory to another category may be called a
representation of the type theory in that category. Since objects and morphisms of term models
are built from formulas of the type theory and objects and morphisms of abstract C-systems are
built from mathematical objects such as sets or homotopy types and the corresponding functions,
such representations provide a mathematical meaning to formulas of type theory.

The existence of these homomorphisms in the particular case of the “standard univalent models”
of Martin-Löf type theories and of the Calculus of Inductive Constructions (CIC) provides the
only known justification for the use of the proof assistants such as Coq for the formalization of
mathematics in the univalent style (see [26], [20]).

Only if we know that the initiality result holds for a given type theory can we claim that a model
defines a representation. A similar problem also arises in the predicate logic but there, since one
considers only one fixed system of syntax and inference rules, it can and had been solved once
without the development of a general theory. The term models for a class of type theories can
be obtained by considering slices of the term model of the type theory called Logical Framework
(LF), but unfortunately it is unclear how to extend this approach to type theories that have more
substitutional (definitional) equalities than LF itself.

A construction of a model for the version of the Martin-Löf type theory that is used in the UniMath
library ([26],[20]) is sketched in [11]. At the time when that paper was written it was unfortunately
assumed that a proof of the initiality result can be found in the existing body of work on type
theory which is reflected in [11, Theorem 1.2.9] (cf. also [11, Example 1.2.3] that claims as obvious
everything that is done in both the present paper and in [25]). Since then it became clear that this
is not the case and that a mathematical theory leading to the initiality theorem and providing a
proof of such a theorem is lacking and needs to be developed.
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As the criteria for what constitutes an acceptable proof were becoming more clear as a result of
continuing work on formalization, it also became clear that more detailed and general proofs need
to be given to many of the theorems of [11] that are related to the model itself. For the two of
the several main groups of inference rules of current type theories it is done in [23] and [22]. Other
groups of inference rules will be considered in further papers of the series.

In the present paper we describe a purely algebraic construction that defines a C-system starting
with a pair (RR,LM) where RR is a relative monad on the functor Jf : F → Sets (see below)
and LM is a (left) module over this monad or, equivalently, a functor from the Kleisli category
K(RR) of RR to Sets.

In the context of type theory C(RR,LM) is the C-system of the raw syntax of a type theory. Such
C-systems have not been considered previously probably because from the perspective of logic they
are hard to interpret. However these C-systems provide a very convenient stepping stone to more
complex term C-systems of type theories.

This construction provides a step in the path from the description of a type theory by a collection
of inference rules, as is customary in the type theory papers, to the term model of this type theory
as a C-system equipped with a system of operations corresponding to these rules.

On this path one starts by defining from the inference rules a two-sorted binding signature that
describes the raw syntax of type and element constructors of the type theory. Then one defines
from this two-sorted binding signature a pair (RR,LM) and, applying the construction of this
paper, obtains the C-system C(RR,LM) of the raw syntax of the theory.

Some idea of how to obtain (RR,LM) from a two-sorted binding signature can be obtained from
the considerations of [7] that describe how obtain a clone (equivalent to our Jf -relative monad)
from a single sorted binding signature Σ. Alternatively one can use the construction of [9] that
provides a monad on Sets that can then be restricted to a Jf-relative monad RΣ . To any such
signature Σ one associates a class of expressions with bindings and RΣ({x1, . . . , xn}) is the set of
such expressions with free variables from the set {x1, . . . , xn} modulo α-equivalence. The results
of the present paper are then applied to the pair RR = RΣ, LM = RΣ where RΣ is considered as
a left module over itself.

The more general case when LM is not equal to RR arises when one starts to distinguish “type
expressions” from “element expressions”. The rules of type theories require the possibility to
substitute an element expression instead of a variable both in a type expression and in an element
expression but do not require to substitute a type expression instead of a variable either in a type or
in an element expression. In type theories of proof assistants such as Coq the user may be under the
impression that the substitution of type expressions instead of variables occurs (as in substituting
unit for T in iscontr(T ) in the UniMath to obtain iscont(unit), cf. [20]) this is however due to
a “silent” map from type expressions to element expressions that is used in these theories. What
actually happens in these substitutions is that an element expression whose type is a universe is
substituted instead of a variable in some situations and the same expression is used as a type
expression in others. In our constructions this corresponds to the case when LM(n) are subsets of
RR(n) - some element expressions also play the role of type expressions.

The question of whether to keep this map silent or to give it a name (usually El) is known in
type theory as the difference between the type theories with “Russell universes” (silent map) and
“Tarski universes” (explicit map) which is at the center of some of the current controversies about
the universe management in proof assistants. It is also the subject of a discussion in the last,
unfinished, chapter in [14].
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For the purposes of the present paper we fortunately don’t need to make a choice between the two
approaches since the formalism that we develop is applicable to both. It is however clear from the
constructions that the separation between RR and LM is a very natural possibility that directly
generalizes the case of LM ⊂ RR.

On the next step towards the term C-system of the type theory the inference rules are used to
define the four subsets of valid judgements B̃, B,Beq and B̃eq where

B̃ ⊂
∐
n∈N

LM(0̂)× . . .× LM(n̂− 1)

B ⊂
∐
n∈N

LM(0̂)× . . .× LM(n̂− 1)×R(n̂)× LM(n̂)

Beq ⊂
∐
n∈N

LM(0̂)× . . .× LM(n̂− 1)× LM(n̂)2

B̃eq ⊂
∐
n∈N

LM(0̂)× . . .× LM(n̂− 1)×R(n̂)2 × LM(n̂)

Next one has to prove then that these subsets satisfy the condition of Theorem ??. This depends on
the form of the inference rules as well as on the method by which valid judgements are defined. These
conditions are necessary and sufficient which means that if they are not satisfied then something is
wrong with the shape of the inference rules or with the method by which the sets of valid judgements
are associated to the rules.

If the conditions are satisfied then these subsets define, as explained in ??, a regular sub-quotient
of C(RR,LM) which is the term C-system of the type theory.

The notion of a relative monad was introduced in [3, Def.1, p. 299] and considered in more detail
in [4]. The notions of the left and right modules over a monad are considered in detail in [9] and
modules over relative monads are introduced in [?]. We remind all of these definitions in the paper.

The reason for this is that the proper way of describing the construction of the term C-system of a
type theory requires a mathematical approach to the notion of a system of inference rules. This is
a highly non-trivial problem that will be addressed in one of the forthcoming papers of this series
after which a complete path from raw syntax, through the inference rules and then through the four
kinds of valid sentences to a C-system with a system of operations corresponding to the inference
rules will be available in a mathematically acceptable form.

Of a particular interest is the case of “syntactic” pairs (RR,LM) where for X = {x1, . . . , xn},
R(X) and LM(X) are the sets of expressions of some kind with free variables from {x1, . . . , xn}
modulo an equivalence relation such as α-equivalence. The difference between R and LM is in this
case expressed by the fact that one can substitute elements from R(X) for variables both in R(Y )
and LM(Y ) but elements of LM(X) can not be substituted for variables in either.

The simplest class of syntactic pairs, where LM = R, arises from binding signatures (see [9, p.228]).

An important remark needs to be made here. While monads provide a very convenient way of
expressing syntax with bindings in terms familiar to mathematicians the approach based on monads
is equivalent to an earlier one pioneered in [7]. For two sets X and Y let Fun(X,Y ) be the set of
functions from X to Y . In that earlier approach one considers the category F such that Ob(F ) = N
and

Mor(F ) = qm,nFun(stn(m), stn(n))

4



where stn(i) = {0, . . . , i − 1} is the “standard” set with i elements, and functors Funct(F, Sets)
from F to Sets (the authors call these functors “presheaves” considering them as presheaves on F op)
. This category of functors is equivalent4 to the category of finitary (co-continuous) functors from
Sets to Sets. In particular, there is a monoidal structure (•, V ) on Funct(F, Sets) corresponding
to the composition of functors under this equivalence (cf. [7, Sec. 3]) and finitary monads can be
considered as monoids in Funct(F, Sets) with respect to this monoidal structure.

Using this equivalence of concepts (detailed in []) the constructions and results of [9] and [7] can be
viewed together as describing different aspects of a fundamental connection between the concrete
world of syntax and the abstract world of categorical mathematics.

After this long detour let me clarify that the results and constructions of the present paper do
not depend on either [9] or [7], except for the definition of a left module over a monad in [9] and
examples. The connection to [9] and [7] will become important only in future papers where we will
consider the abstract concept of a system of inference rules and where binding signatures and the
corresponding syntactic monads will become essential.

In the present paper, after some general comments about monads on Sets and their modules, we
construct for any such monad R and a left module LM over R a C-system (contextual category)
C(RR,LM). We start with a construction of a category C(RR) such that Ob(C(RR)) = N is
the set of natural numbers whose elements we will denote as m̂, n̂ etc. and

Mor(C(RR)) = qm̂,n̂HomSetsR(stn(n), stn(m))

and the identity and composition is defined such as to make the mapping n̂ 7→ stn(n) to extend to
a fully faithful functor Φ from C(RR)op to the Kleisli category SetsR of R. We may sometimes
use this functor as a “coercion”, in the terminology of proof assistant Coq, i.e., to write n̂ instead
of stn(n) and f instead of Φ(f). We will also use the function LM 7→ LMR from left modules to
functors on the Kleisli category as a coercion. In agreement with this convention we may write LM
for the presheaf of sets on C(RR) given by n̂ 7→ LM(n).

We describe, using the results of [25], all the C-subsystems of C(RR,LM) in terms of objects
directly associated with R and LM .

We then define two additional operations σ and σ̃ on C(RR,LM) and describe the regular congru-
ence relations (see [25]) on C-subsystems of C(RR,LM) which are compatible in a certain sense
with σ and σ̃.

Such regular congruence relations correspond, in the particular cases of syntactic monads and C-
subsystems of C(RR,LM) generated by systems of inference rules, to the relations that can be
described by the two kinds of equality judgements.

More precisely, suppose that we are given a type theory that is formulated in terms of the four
kinds of judgements originally introduced by Per Martin-Löf in [13, p.161]5:

(x0 : T0, . . . , xn−1 : Tn−1) ` T type

4In the set-theoretic mathematics this equivalence can not be defined without axiom of choice. The problem lies in
the fact that the obvious functor from F to the category of finite sets, while it is fully faithful and essentially surjective,
does not have a constructive inverse. In the univalent foundations, while one still can not construct an inverse to the
functor from F to finite sets, one can construct an inverse to the corresponding functor from Funct(FSets, Sets) to
Funct(F, Sets) using the fact that Sets is a (univalent) category. Cf. [2] and [26, RezkCompletion library].

5We are not using the notation based on B that became widespread in the modern literature on type theory since
it conflicts with other uses of the turnstile symbol in logic.
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(x0 : T0, . . . , xn−1 : Tn−1) ` t : T

(x0 : T0, . . . , xn−1 : Tn−1) ` T = T ′

(x0 : T0, . . . , xn−1 : Tn−1) ` t = t′ : T

to which one adds the judgement

(x0 : T0, . . . , xn−1 : Tn−1) ` ok

asserting that (x0 : T0, . . . , xn−1 : Tn−1) is a valid context of variable declarations.

Since we are only interested in the α-equivalence classes of judgements we may assume that the
variables declared in the context are taken from the set of natural numbers such that the first
declared variable is 0, the second is 1 etc. Then, the set of judgements of the form

(0 : T0, . . . , n− 1 : Tn−1)T type

can be identified with the set of judgements of the form

(0 : T0, . . . , n− 1 : Tn−1, n : T ) ok

With this identification the valid judgements of the type theory whose raw syntax for element
expressions is given by a monad R and raw syntax for type expressions by a left R-module LM ,
can be described as four subsets B̃, B,Beq and B̃eq where

B̃ ⊂
∐
n∈N

LM(0)× . . .× LM(n− 1)

B ⊂
∐
n∈N

LM(0)× . . .× LM(n− 1)×R(stn(n))× LM(n)

Beq ⊂
∐
n∈N

LM(0)× . . .× LM(n− 1)× LM(n)2

B̃eq ⊂
∐
n∈N

LM(0)× . . .× LM(n− 1)×R(stn(n))2 × LM(n)

The sets on the right hand side of the first two of these inclusions are in the bijective correspondences
with the sets Ob(C(RR,LM)) and Õb(C(RR,LM)). It was shown in [25, Proposition 4.3] that

for any C-system CC, pairs (B, B̃) where B ⊂ Ob(CC) and B̃ ⊂ Õb(CC) that satisfy certain
conditions are in a bijective correspondence with C-subsystems of CC. In Proposition ?? we give a
direct reformulation of these conditions in the case of C-systems of the form C(RR,LM) in terms
of subsets B̃ and B and in Remark ?? we show how these conditions look like in the notation of
type theory.

We then continue our analysis to provide a mathematical meaning to the subsets Beq and B̃eq as
well. In order to obtain a bijection of Proposition ?? between pairs of such subsets that satisfy
certain properties and objects that have meaning for general C-systems we introduce operations σ
and σ̃.

Proposition ?? and subsequent lemmas culminating in Proposition ?? form what is probably the
most important part of the paper. They provide, for the first time, a rigorous mathematical analysis
of the conditions that the valid definitional equality judgements of a type system have to satisfy in
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order to define well-behaved equivalence relation on the sets such as the sets of morphisms (context
substitutions) of a type theory.

While proving conditions of Proposition ?? in the case when B̃, B, Beq and B̃eq are the sets of
valid judgements of a particular type system is something that must be done in order to apply the
results of the present paper to this type system, proving these conditions is much less difficult than
giving a direct construction of a C-system starting from the syntax and the inference rules.

Providing this explicit set of conditions and proving that they are necessary and sufficient in order
to associate a C-system and, therefore, any of the other semantic objects such as a category with
families, to a particular type system may be considered to be the main result of this paper.

The paper is written in the formalization-ready style with the intent to produce a UniMath for-
malization of its results in the near future.

We also consider it to be important to formalize the results of this paper in Zermelo-Fraenkel
theory. Indeed, since it forms a part of the theory on which the relative consistency of the UniMath
language with respect to the set theory is based, it has to be formally verified in a theory that
is weaker than UniMath or, better, that is weaker than both UniMath and the Zermelo-Fraenkel
theory. However, the main choices that we had to make were made with the intent to first formalize
this paper in the UniMath.

For morphisms f : X → Y and g : Y → Z we denote their composition as f ◦ g. For functors
F : C → C′, G : C′ → C′′ we use the standard notation G ◦ F for their composition.

Following the notation of the proof assistant Coq we let unit denote the distinguished one point
set or type and tt the only point of unit.

In all that follows we fix a universe U and write Sets instead of Sets(U).

This is one the papers extending the material which I started to work on in [16]. I would like to
thank the Institute Henri Poincare in Paris and the organizers of the “Proofs” trimester for their
hospitality during the preparation of the first version of this paper. The work on this paper was
facilitated by discussions with Benedikt Ahrens, Richard Garner and Egbert Rijke.

2 Some general remarks on C-systems

[onCsystems] Recall that for a C-system CC, and object Γ of CC such that l(Γ) ≥ i we let pΓ,i

denote the morphism Γ→ fti(Γ) defined inductively as

pΓ,0 = IdΓ

pΓ,i+1 = pΓ ◦ pft(Γ),i

For Γ as above and f : Γ′ → fti(Γ) we let f∗(Γ, i) and

q(f,Γ, i) : f∗(Γ, i)→ Γ

define a pair of an object and a morphism defined inductively as

f∗(Γ, 0) = Γ′ q(f,Γ, 0) = f
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f∗(Γ, i+ 1) = q(f, ft(Γ), i)∗(Γ) q(f,Γ, i+ 1) = q(q(f, ft(Γ), i),Γ)

For Γ,Γ′ in a C-system let us write Γ ≤ Γ′ if l(Γ) ≤ l(Γ′) and Γ = ftl(Γ
′)−l(Γ)(Γ′). We will write

Γ < Γ′ if Γ ≤ Γ′ and l(Γ) < l(Γ′).

If Γ′ is over Γ we will denote by pΓ′,Γ the morphism

pΓ′,l(Γ′)−l(Γ) : Γ′ → Γ

If Γ′ and Γ′′ are over Γ then we have morphisms

pΓ′,Γ : Γ′ → Γ

pΓ′′,Γ : Γ′′ → Γ

and we say that a morphism f : Γ′ → Γ′′ is over Γ if

f ◦ pΓ,Γ′′ = pΓ,Γ′

If Γ′ is an object over Γ and f : ∆ → Γ is a morphism then let us denote simply by f∗(Γ′) the
object f∗(Γ′, n) where n = l(Γ′)− l(Γ). Note that n can always be inferred from f and Γ′.

Similarly we will write simply q(f,Γ) for q(f,Γ, n) since n can be inferred as l(Γ)− l(codom(f)).

Lemma 2.1 [2015.08.23.l1a] Let Γ′,Γ′′ be objects over Γ, a : Γ′ → Γ′′ a morphism over Γ and
f : ∆ → Γ a morphism. Then there is a unique morphism f∗(a) : f∗(Γ′) → f∗(Γ′′) over ∆ such
that the square

f∗(Γ′)
q(f,Γ′)−−−−→ Γ′

f∗(a)

y ya

f∗(Γ′′)
q(f,Γ′′)−−−−→ Γ′′

commutes.

Proof: We have a square

[2015.08.23.eq3]

f∗(Γ′′)
q(f,Γ′′)−−−−→ Γ′′

pf∗(Γ′′),∆

y ypΓ′′,∆

∆
f−−−→ Γ

(1)

This square is a pull-back square as a vertical composition of l(Γ′′) − l(Γ) pull-back squares. We
define f∗(a) as the unique morphism such that

[2015.08.23.eq1]f∗(a) ◦ q(f,Γ′′) = q(f,Γ′) ◦ a (2)

and
[2015.08.23.eq2]f∗(a) ◦ pf∗(Γ′′),∆ = pf∗(Γ′),∆ (3)

The first of these two equalities is equivalent to the commutativity of the square (1) and the second
to the condition that f∗(a) is a morphism over ∆.
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Lemma 2.2 [2015.08.29.l2] Let a : Γ′ → Γ′′ be a morphism over Γ, Γ′′′ another object over Γ
and suppose that a is a morphism over Γ′′′. Let f : ∆→ Γ be a morphism. Then one has

[2015.08.29.eq2]f∗(a) = q(f,Γ′′′)∗(a) (4)

Proof: The morphisms involved in the proof can be seen on the diagram

f∗(Γ′)
q(f,Γ′)−−−−→ Γ′

f∗(a)

y ya

f∗(Γ′′)
q(f,Γ′′)−−−−→ Γ′′

pf∗(Γ′′),f∗(Γ′′′)

y ypΓ′′,Γ′′′

f∗(Γ′′′)
q(f,Γ′′′)−−−−−→ Γ′′′

pf∗(Γ′′′),∆

y ypΓ′′′,Γ

∆
f−−−→ Γ

The right hand side of (4) is a morphism over f∗(Γ′′′) and therefore a morphism over ∆. It remains
to verify that it satisfies equation (2). This follows immediately from its definition.

We will also need the following facts about homomorphisms of C-systems.

Lemma 2.3 [2015.09.03.l2] Let F : CC → CC ′ be a homomorphism of C-systems. Then one
has:

1. for Γ ∈ CC and i ∈ N one has F (pΓ,i) = pF (Γ),i,

2. for Γ,Γ′ ∈ CC, Γ ≤ Γ′ implies F (Γ) ≤ F (Γ′) and similarly for <,

3. for Γ′ ≥ Γ and f : ∆→ Γ one has

F (f∗(Γ′)) = (F (f))∗(F (Γ′))

4. for Γ′,Γ′′ ≥ Γ, a : Γ′ → Γ′′ over Γ and f : ∆→ Γ one has

F (f∗(a)) = (F (f))∗(F (a))

5. for Γ such that l(Γ) > 0 one has

F (δ(Γ)) = δ(F (Γ))

Proof: The proofs are straightforward and we leave them for the formalized version of the paper.
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3 The presheaf extension of a C-system

Let CC be a C-system and F : CCop → Sets a presheaf on the category underlying CC. In this
section we construct a new C-system CC[F ] which we call the F -extension of CC and describe a
unital pre-B-system B(CC,F ) and an isomorphism B(CC[F ])→ B(CC,F ).

We will first construct a C0-system CC[F ] and then show that it is a C-system. For the definition
of a C0-system see [25, Definition 2.1].

Problem 3.1 [2016.01.19.prob1] Given a C-system CC and a presheaf F : CCop → Sets to
construct a C0-system that will be denoted CC[F ] and called the F -extension of CC.

Construction 3.2 [2016.01.19.constr1] We set

[2016.01.19.eq1]Ob(CC[F ]) = qX∈CCF (ftl(X)(X))× . . .× F (ft2(X))× F (ft(X)) (5)

where the product of the empty sequence of factors is a 1-point set. We will write elements of
Ob(CC[F ]) as (X,Γ) where X ∈ CC and Γ = (T0, . . . , Tl(X)−1). Note that ftl(X)(X) = pt for any
X and therefore all the products in (5) start with F (pt).

We set
Mor(CC[F ]) = q(X,Γ),(Y,Γ′)MorCC(X,Y )

We will write elements of Mor(CC[F ]) as ((X,Γ), (Y,Γ′), f). When the domain and the codomain
of a morphism are clear from the context we may write f instead of ((X,Γ), (Y,Γ′), f).

We define the composition function by the rule

((X,Γ), (Y,Γ′), f)) ◦ ((Y,Γ′), (Z,Γ′′), g) = ((X,Γ), (Z,Γ′′), f ◦ g)

We define the identity morphisms by the rule

IdCC[F ],(X,Γ) = ((X,Γ), (X,Γ), IdCC,X)

The associativity and the identity conditions of a category follow easily from the corresponding
properties of CC. This completes the construction of a category CC[F ].

We define the length function as
l((X,Γ)) = l(X)

If l((X,Γ)) = 0 then X = pt and Γ = () where () is the unique element of the one point set that is
the product of the empty sequence. We will often write (pt, ()) as pt.

We define the ft-function on (X,Γ) such that l(X) > 0 as

ft((X, (T0, . . . , Tl(X)−1)) = (ft(X), (T0, . . . , Tl(X)−2))

which is well defined because l(ft(X)) = l(X) − 1, and set ft((pt, ())) = (pt, ()). We will write
ft(Γ) for (T0, . . . , Tl(X)−2) so that ft((X,Γ)) = (ft(X), ft(Γ)).

We define the p-morphisms as

p(X,Γ) = ((X,Γ), ft(X,Γ), pX)
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For (Y,Γ′) such that l((Y,Γ′)) > 0 and f : (X,Γ) → ft(Y,Γ′) where Γ = (T0, . . . , Tl(X)−1) and
Γ′ = (T ′0, . . . , T

′
l(X)−1) we set

f∗((Y,Γ)) = (f∗(Y ), (T0, . . . , Tl(X)−1, F (q(f, Y ))(T ′l(Y )−1))).

This element is well defined because

ftl(f
∗(Y ))−i(f∗(Y )) = ftl(X)+1−i(f∗(Y )) = ftl(X)−i(X)

In the same context as above we define the q-morphism as

q(f, (Y,Γ)) = (f∗((Y,Γ)), (Y,Γ), q(f, Y ))

This completes the construction of the elements of the structure of a C0-system. Let us verify that
these elements satisfy the axioms of a C0-system.

The uniqueness of an object of length 0 is obvious.

The condition that l(ft(X,Γ)) = l((X,Γ))− 1 if l((X,Γ)) > 0 is obvious.

The condition that ft((pt, ())) = (pt, ()) is obvious.

The fact that pt is a final object in CC[F ] follows from the fact that pt is a final object of CC.

The fact that for (Y,Γ′) such that l((Y,Γ′)) > 0 and f : (X,Γ) → ft(Y,Γ′) one has q(f, (Y,Γ′)) ◦
p(Y,Γ′) = pf∗((Y,Γ′)) ◦ f follows from the corresponding fact in CC.

The fact that for (Y,Γ′) such that l((Y,Γ′)) > 0 one has Id∗ft(Y,Γ)((Y,Γ
′)) = (Y,Γ′) follows from the

corresponding fact for CC and the identity axiom of the functor F .

The fact that for (Y,Γ′) such that l((Y,Γ′)) > 0 one has q(Id(Y,Γ), (Y,Γ)) = Id(Y,Γ) follows from
the previous assertion and the corresponding fact in CC.

The fact that (Y,Γ′) such that l((Y,Γ′)) > 0, f : (X,Γ) → ft(Y,Γ′) and g : (W,∆) → (X,Γ) one
has g∗(f∗((Y,Γ))) = (g ◦ f)∗((|Y,Γ)) follows from the composition axiom for the functor F and the
corresponding fact for CC.

The fact that in the same context as in the previous assertion one has

q(g, f∗((Y,Γ))) ◦ q(f, (Y,Γ)) = q((g ◦ f), (Y,Γ))

follows from the previous assertion and the corresponding fact for CC.

This completes Construction 3.2

Lemma 3.3 [2016.01.19.l2] The functions Ob(CC[F ])→ Ob(F ) and Mor(CC(F ))→Mor(CC)
given by

(X,Γ) 7→ X

and
((X,Γ), (Y,Γ′), f) 7→ f

form a functor trF : CC[F ]→ CC and this functor is fully faithful.

Proof: Straightforward from the construction.
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Lemma 3.4 [2016.01.19.l1] The C0-system of Construction 3.2 is a C-system.

Proof: By [25, Proposition 2.4] it is sufficient to prove that the canonical squares of CC[F ], i.e.,
the squares formed by morphisms q(f, (Y,Γ)), p(Y,Γ) and pf∗((Y,Γ)), f are pull-back squares. The
functor of Lemma 3.3 map these square to canonical squares of the C-system CC that are pull-
back squares. Since this functor is fully faithful we conclude that the canonical squares in CC[F ]
are pull-back squares. The lemma is proved.

This completes the construction of the presheaf extension of a C-system.

Remark 3.5 [2015.09.01.rem1] For any two objects of C(RR,LM) of the form (X,Γ), (X,Γ′)
the formula

canX,Γ,Γ′ = ((X,Γ), (X,Γ′), IdX)

defines a morphism which is clearly an isomorphism with canX,Γ′,Γ being a canonical inverse.
Therefore, all objects of CC[F ] with the same image in CC are “canonically isomorphic”.

Remark 3.6 [2015.09.01.rem2] If F (pt) = ∅ then CC[F ] = {pt}. On the other hand, the
choice of an element y in F (pt) defines distinguished elements yX = F (πX)(y) in all sets F (X)
and therefore distinguished objects (X,ΓX,y) = (X, (y, . . . , yft(X), yX)) in the fibers of the object
component of trF over all X.

Mapping X to (X,ΓX,y) and f : X → Y to ((X,ΓX,y), (Y,ΓY,y), f) defines, as one can immediately
prove from the definitions, a functor tr!

F,y : CC → CC[F ].

This functor clearly satisfies the conditions tr!
F,y ◦ trF = IdCC .

One verifies easily that the morphisms

canX,Γ,Γ(X,y)
: (X,Γ)→ tr!

F,y(X,Γ)

form a natural transformation. We conclude that trF and tr!
F,y is a pair of mutually inverse

equivalences of categories.

However this equivalence is not an isomorphism unless F (X) ∼= unit for all X and as a C-system
CC[F ] is often very different from CC, for example, in that that it may have many more C-
subsystems.

We provide the following lemma without a proof because the proof is immediate from the definitions
and [19, Lemma 3.4] that asserts that a functor that satisfies all conditions of the definition of a
homomorphism except possibly the s-morphisms condition is a homomorphism.

Lemma 3.7 [2015.08.22.l4] The functor tr : CC[F ]→ CC is a homomorphism of C-systems.

Remark 3.8 [2015.08.22.rem1] Let y ∈ F (pt). Then for f : X → Y one has F (f)(yY ) = yX
and therefore for f : X → ft(Y ) one has

(tr!
y(f))∗(Y ) = (f∗(Y ),Γf∗(Y ),y) = f∗((Y,ΓY )) = tr!

y(f)∗(try(Y ))
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The rest of the conditions that one needs to prove in order to show that try is a homomorphism of
C-systems is immediate from definitions and we obtain that

tr1
y : CC → CC[F ]

is a homomorphism of C-systems.

Recall that by definition (X,Γ) ≤ (Y,Γ′) if and only if l(Y,Γ′) ≥ l(X,Γ) and

(X,Γ) = ftl(Y,Γ
′)−l(X,Γ)(Y,Γ′).

From construction we conclude that (X,Γ) ≤ (Y,Γ′) if and only if X ≤ Y in CC and Γ =
ftl(Y )−l(X)(Γ′).

Lemma 3.9 [2015.08.26.l7] Let (X,Γ) ≤ (Y,Γ′) and let f : (W,∆)→ (X,Γ) be a morphism. Let
Γ = (T0, . . . , Tm−1), Γ′ = (T0, . . . , Tm−1, . . . , Tn−1) and ∆ = (T ′0, . . . , T

′
l−1). Then one has

f∗((X,Γ)) = (T ′0, . . . , T
′
l−1, F (q(f, ftn−m(Y,Γ′), 1))(Tm), . . . , F (q(f, (Y,Γ′), n−m))(Tn))

Proof: Straightforward by induction on n−m.

4 Some computations with Jf-relative monads

The notion of a relative monad is introduced in [3, Def.1, p. 299] and considered in more detail in
[4]. Let us remind it here.

Definition 4.1 [2015.12.22.def1] Let J : C → D be a functor. A relative monad RR on J or a
J-relative monad is a collection of data of the form

1. a function RR : Ob(C)→ Ob(D),

2. for each X in C a morphism η(X) : J(X)→ RR(X),

3. for each X,Y in C and f : J(X)→ RR(Y ) a morphism ρ(f) : RR(X)→ RR(Y ),

such that the following conditions hold:

1. for any X ∈ C, ρ(η(X)) = IdRR(X),

2. for any f : J(X)→ RR(Y ), η(X) ◦ ρ(f) = f ,

3. for any f : J(X)→ RR(Y ), g : J(Y )→ RR(Z),

ρ(f) ◦ ρ(g) = ρ(f ◦ ρ(g))

Problem 4.2 [2016.01.15.prob1] Given a relative monad RR to construct a functor (RROb, RRMor)
from C to D such that RROb = RR.
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Construction 4.3 [2016.01.15.constr1] For f : X → Y in C set

RRMor(f) = ρ(J(f) ◦ η(Y ))

The proof of the composition and the identity axioms of a functor are easy.

For two sets X and Y we let Fun(X,Y ) to denote the set of functions from X to Y .

Next, following [7] we let F denote the category with the set of objects N and the set of morphisms
from m to n being Fun(stn(m), stn(n)), where stn(m) = {i ∈ N | i < m} is our choice for the
standard set with m elements (cf. [21]) and where for two sets X and Y ,

For any set U there is a category Sets(U) of the following form. The set of objects of Sets(U) is
U . The set of morphisms is

Mor(Sets(U)) = ∪X,Y ∈UFun(X,Y )

Since a function from X to Y is defined as a triple (X,Y,G) where G is the graph subset of this
function the domain and codomain functions are well defined on Mor(Sets(U)) such that

MorSets(U)(X,Y ) = Fun(X,Y )

and a composition function can be defined that restricts to the composition of functions function
on each MorSets(U)(X,Y ). Finally the identity function U → Mor(Sets(U)) is obvious and the
collection of data that one obtains satisfies the axioms of a category. This category is called the
category of sets in U and denoted Sets(U).

We will only consider the case when U is a universe.

Following [3] we let JfU : F → Sets(U) denote the functor that takes n to stn(n) and that is
the identity on morphisms between two objects (on the total sets of morphisms the morphism
component of this functor is the inclusion of a subset).

As the following construction shows any monad on sets defines a Jf -relative monad. Combined
with our construction of C(RR) this gives a construction of a C-system for any monad on sets.

Problem 4.4 [2016.01.13.prob1] Given a monad R = (R, η, µ) (cf. [12][p. 133]) on the category
of sets in U to construct a Jf -relative monad RR.

Construction 4.5 [2016.01.13.constr1] We set

1. R(n) = R(stn(n)),

2. ηn = ηstn(n),

3. for f : stn(m)→ R(n) we set ρ(f) = R(f) ◦ µstn(n).

The verification of the relative monad axioms is easy.

Remark 4.6 [2016.01.03.rem1] It seems to be possible to provide a construction of a monad
from a Jf -relative monad without the use of the axioms of choice and excluded middle. This
construction will be considered in a separate note.
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Remark 4.7 [2016.01.17.rem1] The set of Jf-relative monads in U is in an easy to construct
bijection with the set of abstract clones (in U) as defined in [7, Section 3].

In [24] we constructed for any Jf -relative monad RR = (RR, η, ρ) a Lawvere theory (T, L) =
RML(RR). Most of this section is occupied by simple computations in T that will be used in the
later sections.

Recall that the category T has as the set of objects the set of natural numbers and as the set of
morphisms the set

MotT = qm,nFun(stn(m), RR(n))

Therefore the set of morphisms in T from m to n is the set of iterated pairs ((m,n), f) where
f ∈ Fun(stn(m), RR(n)). We fix the obvious bijection between this set and Fun(stn(m), RR(n))
and use the corresponding functions in both directions as coercions. A coercion, in the terminology
of the proof assistant Coq, is a function f : X → Y such that when an expression denoting an
element x of the set X occurs in a position where an element of Y should be it is assumed that x
is replaced by f(x).

Let us introduce the following notation:

F (m,n) = Fun(stn(m), stn(n))

and, for a Jf -relative monad RR,

RR(m,n) = Fun(stn(m), RR(n))

Then for f ∈ RR(l,m) and g ∈ RR(m,n) the composition f ◦T g in T is defined as ρ(f) ◦ g and for
m ∈ N the identity morphism Idm in T is defined as η(m).

The functor L : F → T is defined as the identity on objects and as the function on morphisms
corresponding to the functions f 7→ f ◦ η(n) from F (m,n) to RR(m,n).

We also obtain the extension of RR to a functor F → Sets(U) according to Construction 4.3. For
a morphism f ∈ F (m,n) we have RR(f) = ρ(f ◦ η(n)) = ρ(L(f)).

We are going to use the functions f 7→ RR(f) as coercions so that when an element f of F (m,n)
occurs in a position where an element of Fun(RR(m), RR(n)) is expected it has to be replaced by
RR(f).

Remark 4.8 [2015.11.20.rem4] We can not replace q by ∪ in our definition of the set of
morphisms of T because for a general RR the sets RR(m,n) are not disjoint. For example, if
RR(m) = pt where pt is a fixed one element set then RR has a (unique) structure of a Jf -relative
monad and RR(m,n) = RR(m,n′) for all m,n, n′. Therefore no function to N from the union
of these sets can distinguish the codomain of a morphism. In particular, in this case there is no
category with the sets of morphisms from m to n being equal RR(m,n).

Since we will have to deal with elements of the sets of functions Fun(stn(m), RR(n)) and of similar
sets such as the sets Obn(C(RR,LM)) introduced later we need to choose some way to represent
them. For the purpose of the present paper we will write such elements as sequences, i.e., to
denote the function, which in the notation of λ-calculus is written as λ i : stn(n), fi, we will write
(f0, . . . , fn−1). In particular, for an element x of a set X, the expression (x) denotes the function
stn(1)→ X that takes 0 to x.
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Lemma 4.9 [2016.01.15.l4] Let f = (f(0), . . . , f(l − 1)) be a morphism in T from l to m and
g = (g(0), . . . , g(m− 1)) a morphism from m to n. Then one has

f ◦T g = (ρ(g)(f(0)), . . . , ρ(g)(f(l − 1)))

Proof: We have
(f ◦T g)(i) = (f ◦ ρ(g))(i) = ρ(g)(f(i)).

The lemma is proved.

Lemma 4.10 [2015.08.30.l1] Let f ∈ F (l,m), g ∈ RR(m,n) and i ∈ stn(l). Then one has

[2015.08.26.eq4](L(f) ◦T g)(i) = g(f(i)) (6)

Proof: Rewriting the left hand side we get

(L(f) ◦T g)(i) = ((f ◦ η(m)) ◦ ρ(g))(i) = (f ◦ (η(m) ◦ ρ(g)))(i) = (f ◦ g)(i) = g(f(i)).

which completes the proof.

For n ∈ N and i = 0, . . . , n− 1 let

xni = η(n)(i) ∈ RR(n)

Observe also that for f ∈ RR(m,n) one has

[2015.08.24.eq5]ρ(f)(xmi ) = (η(m) ◦ ρ(f))(i) = f(i) (7)

and for f ∈ F (m,n) one has

[2016.01.15.eq1]f(xmi ) = RR(f)(η(m)(i)) = (η(m)◦ρ(f◦η(n)))(i) = (f◦η(n))(i) = η(n)(f(i)) = xnf(i)

(8)
Let

∂in : stn(n)→ stn(n+ 1)

for 0 ≤ i ≤ n be the increasing inclusion that does not take the value i and

σin : stn(n+ 2)→ stn(n+ 1)

for 0 ≤ i ≤ n be the non-decreasing surjection that takes the value i twice. Taking into account
that, in the notation of [8], [n] = stn(n + 1) these are the standard generators of the simplicial
category ∆ together with ∂0

0 : stn(0)→ stn(1).

In our sequence notation we have

[2015.08.24.eq7]L(∂in) = (xn+1
0 , . . . , xn+1

i−1 , x
n+1
i+1 , . . . , x

n+1
n ) (9)

and
[2015.08.24.eq8]L(σin) = (xn+1

0 , . . . , xn+1
i−1 , x

n+1
i , xn+1

i , xn+1
i+1 , . . . , x

n+1
n ) (10)

in particular
[2015.07.12.eq5]L(∂nn) = (xn+1

0 , . . . , xn+1
n−1) (11)
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Let
ιin : stn(n)→ stn(n+ i)

be the function given by ιin(j) = j for j = 0, . . . , n− 1. Then we have

[2015.08.22.eq7]ι1n = ∂nn (12)

and (8) implies that
[2015.08.22.eq8]ιin(xnj ) = xn+i

j (13)

Lemma 4.11 [2015.08.26.l1] Let f = (f(0), . . . , f(m)) be a morphism from m + 1 to n in T .
Then

[2016.01.15.eq3]L(ι1m) ◦T f = (f(0), . . . , f(m− 1)) (14)

In particular, if f ∈ RR(n+1, n) then L(ι1n)◦T f = IdT,n if and only if f(i) = xin for i = 0, . . . , n−1.

Proof: Both sides of the required equality are elements of Fun(stn(m), RR(n)). Therefore, the
equality holds if and only if for all i = 0, . . . , n − 1 we have (L(ι1m) ◦T f)(i) = f(i). The assertion
of the lemma follows now from Lemma 4.10.

Since IdT,n = (xn0 , . . . , x
n
n−1) the second assertion immediately follows from the first one.

For f ∈ RR(n,m), f = (f(0), . . . , f(n − 1)) define an element qq(f) ∈ RR(n + 1,m + 1) by the
formula:

[2015.08.26.eq9]qq(f) = (ι1m(f(0)), . . . , ι1m(f(n− 1)), xm+1
m ) (15)

Lemma 4.12 [2015.08.26.l2] For i ∈ N and f = (f(0), . . . , f(n− 1)) in RR(n,m) one has

qqi(f) = (ιim(f(0)), . . . , ιim(f(n− 1)), xm+i
m , . . . , xm+i

m+i−1)

Proof: Straightforward by induction on i.

Lemma 4.13 [2015.08.26.l3a] For n, i ∈ N one has

qqi(L(ι1n)) = L(∂nn+i)

Proof: We have L(ι1n) = L(∂nn) = (xn+1
0 , . . . , xn+1

n−1). By Lemma 4.12 and (13) we get

qqi(L(ι1n)) = (ιin+1(xn+1
0 ), . . . , ιin+1(xn+1

n−1), xn+1+i
n+1 , . . . , xn+1+i

n+i ) =

= (xn+1+i
0 , . . . , xn+1+i

n−1 , xn+1+i
n+1 , . . . , xn+1+i

n+i ) = L(∂n+i
n )

where the last equality is (9).

Lemma 4.14 [2015.08.28.l1] For i,m ∈ N and r ∈ RR(m) one has

qqi(xm0 , . . . , x
m
m−1, r) = (xm+i

0 , . . . , xm+i
m−1, ι

i
m(r), xm+i

m , . . . , xm+i
m+i−1)
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Proof: One has

qqi(xm0 , . . . , x
m
m−1, r) = (ιim(xm0 ), . . . , ιim(xmm−1), ιim(r), xm+i

m , . . . , xm+i
m+i−1) =

(xm+i
0 , . . . , xm+i

m−1, ι
i
m(r), xm+i

m , . . . , xm+i
m+i−1)

where the first equality is by Lemma 4.12 and the second one by (13).

5 The C-system C(RR)

In [21] we constructed for any Lawvere theory (T, L) a C-system LC((T, L)). For (T, L) =
RML(RR) we denote the C-system LC((T, L)) by C(RR). In this section we first provide a
more explicit description of C(RR) and then construct from RR a pre-B-system BB(RR) and an
isomorphism between BB(RR) and the pre-B-system of C(RR) (see [18]).

Recall that as a category C(RR) is the opposite category to T . To distinguish the positions in
formulas where natural numbers are used as objects of C(RR) we will write in such places m̂
instead of m, n̂ instead of n etc.

We consider L as a functor
L : F op → C(RR)

i.e., as a contravariant functor from F to C(RR) and keep the conventions introduced in the
previous section the most important of which is that for f ∈ F (m,n) and x ∈ RR(m) we write
f(x) for RR(f)(x) = ρ(f ◦ η(n))(x).

The ft function on C(RR) is defined by the formula ft(n̂+ 1) = n̂ and ft(0̂) = 0̂.

The p-morphisms are defined by setting p0̂ = Id0̂ and p
n̂+1

: n̂+ 1→ n̂ to be the morphism L(ι1n).
In the sequence notation we have

[2015.08.24.eq6]p
n̂+1

= (xn+1
0 , . . . , xn+1

n−1) (16)

For a morphism f : m̂→ n̂ in C(RR) we have f∗(n̂+ 1) = m̂+ 1.

Before giving an explicit description of q-morphisms we will prove the following lemma.

Lemma 5.1 [2015.07.24.l1] One has:

1. Let f = (f(0), . . . , f(n)) be a morphism m̂+ 1→ n̂+ 1. Then

f ◦C pn̂+1
= (f(0), . . . , f(n− 1))

2. Let f = (f(0), . . . , f(n− 1)) be a morphism m̂→ n̂. Then

p
m̂+1
◦C f = (ι1m(f(0)), . . . , ι1m(f(n− 1)))

Proof: Both sides of the first equality are elements of Fun(stn(n), RR(m+ 1)) and for i ∈ stn(n)
we have

(f ◦C pn̂+1
)(i) = (L(ι1n) ◦T f)(i) = f(i)

where the second equality is by (6).
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Both sides of the second equality are again elements of Fun(stn(n), RR(m+ 1)) and for i ∈ stn(n)
we have:

(p
m̂+1
◦C f)(i) = (f ◦T L(ι1m))(i) = (f ◦ ρ(L(ι1m)))(i) = (f ◦RR(ι1m))(i) = ι1m(f(i))

The q-morphisms were defined in [21] in a somewhat implicit manner. We give their explicit
description in the following lemma.

Lemma 5.2 [2016.01.15.l3] Let f : m̂→ n̂ be a morphism in C(RR). Then one has

q(f, n̂+ 1) = qq(f)

Proof: The morphism q(f) = q(f, n̂+ 1) was defined in [21] as the unique morphism such that

q(f) ◦C pn̂+1
= p

m̂+1
◦C f

and
q(f) ◦C (xn+1

n ) = (xm+1
m )

For the first equation we have

qq(f) ◦C pn̂+1
= (ι1m(f(0)), . . . , ι1m(f(n− 1)))

by Lemma 5.1(1) and (15) and

p
m̂+1
◦C f = (ι1m(f(0)), . . . , ι1m(f(n− 1)))

by Lemma 5.1(2).

Both sides of the second equation are elements of Fun(stn(1), RR(m+ 1)) and it is sufficient that
their values on 0 coincide. We have

(q(f)◦C(xn+1
n ))(0) = ((xn+1

n )◦T qq(f))(0) = ((xn+1
n )◦ρ(qq(f))) = ρ(qq(f))(xn+1

n ) = qq(f)(n) = xm+1
m

where the fourth equality is by (7) and the fifth by (15). This completes the proof of Lemma 5.2.

Let us describe the constructions introduced in Section 2 in the case of C(RR). Note that our wide-
hat notation that distinguishes the places in formulas where natural numbers are used as objects
of C(RR) allows us to avoid the ambiguity that might have arisen otherwise. For example pm,n

could be understood either as the canonical morphism m→ n using the notation pΓ′,Γ introduced
in Section 2 or as the canonical morphism m → m − n using the notation pΓ,i that we have used
in [25]. The use of the wide-hat diacritic allows to distinguish between pm̂,n̂ - a morphism m̂→ n̂,

and pm̂,n - a morphism m̂→ m̂− n.

Lemma 5.3 [2015.08.22.l6] Let n, i ∈ N.

1. One has

(a) p
n̂+i,i

= L(ιn+i
n ) = (xn+i

0 , . . . , xn+i
n−1),
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(b) for m ∈ N and g = (g(0), . . . , g(n + i − 1)) from m̂ to n̂+ i one has g ◦ p
n̂+i,i

=

(g(0), . . . , g(n− 1)),

2. for f : m̂→ n̂ one has
f∗(n̂+ i, i) = m+ i

and
q(f, n̂+ i, i) = qqi(f)

Proof: All three assertions a proved by induction on i. For the first assertion both parts are proved
by induction simultaneously. One has

1. in the case i = 0 the first assertion follows from the identity axiom of the functor (RROb, RRMor)
and second from the identity axiom of the category C(RR),

2. for the successor of i we have

p
n̂+i+1,i+1

= p
n̂+i+1

◦ p
n̂+i,i

= (xn+i+1
0 , . . . , xn+i+1

n−1 )

where the second equality is by the second part of the inductive assumption. For the inductive
step in the second part we have

(g(0), . . . , g(n+ i)) ◦ p
n̂+i+1,i+1

= (g(0), . . . , g(n+ i)) ◦ p
n̂+i+1

◦ p
n̂+i,i

=

(g(0), . . . , g(n+ i− 1)) ◦ p
n̂+i,i

= (g(0), . . . , g(n− 1))

The proof of the first part of the second assertion is obvious. For the second part we have:

1. for i = 0 the assertion is obvious,

2. for the successor of i we have

q(f, ̂n+ i+ 1, i+ 1) = qq(q(f, n̂+ i, i)) = qq(qqi(f)) = qqi+1(f)

Lemma 5.4 [2015.08.22.l7] Let f = (f(0), . . . , f(n)) be a morphism from n̂ to n̂+ 1. Then
f ◦ p

n̂+1
= Idn̂ if and only if f(i) = xni for i = 0, . . . , n− 1.

Proof: It follows immediately from Lemma 4.11.

Lemma 5.5 [2015.09.09.l1] Let f = (f(0), . . . , f(n−1)) be a morphism from m̂ to n̂ where n > 0.
Then one has

sf = (xm0 , . . . , x
m
m−1, f(n− 1))

Proof: By [25, Definition 2.3(2)] we have that

sf ◦ pm̂+1
= Idm̂
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Therefore, by Lemma 5.4, sf is of the form (xm0 , . . . , x
m
m−1, sf) for some sf ∈ RR(m). By [25,

Definition 2.3(3)] we have f = sf ◦ q(ft(f), n̂) where ft(f) = f ◦ pn̂. By Lemma 5.1(1) we have
ft(f) = (f(0), . . . , f(n− 2)) and by Lemma 5.2 and (15) we have

q(ft(f), n̂) = qq(ft(f)) = (ι1m(f(0)), . . . , ι1m(f(n− 2)), xm+1
m )

Therefore we should have

(f(0), . . . , f(n− 1)) = (ι1m(f(0)), . . . , ι1m(f(n− 2)), xm+1
m ) ◦T (xm0 , . . . , x

m
m−1, sf)

which is equivalent to, by Lemma 4.9,

[2016.01.15.eq6]f(i) = ρ(xm0 , . . . , x
m
m−1, sf)(ι1m(f(i))) (17)

for i = 0, . . . , n− 2 and

[2016.01.15.eq7]f(n− 1) = ρ(xm0 , . . . , x
m
m−1, sf)(xm+1

m ) (18)

For the first series of equalities we get, by inserting the coercion RR and rewriting of the right
hand side, the following

ρ(xm0 , . . . , x
m
m−1, sf)(ι1m(f(i))) = (ρ(L(ι1m)) ◦ ρ(xm0 , . . . , x

m
m−1, sf))(f(i)) =

ρ(L(ι1m) ◦ ρ(xm0 , . . . , x
m
m−1, sf))(f(i)) = ρ(L(ι1m) ◦T (xm0 , . . . , x

m
m−1, sf))(f(i)) =

ρ((xm0 , . . . , x
m
m−1))(f(i)) = ρ(η(m))(f(i)) = IdRR(m)(f(i)) = f(i)

where the fourth equality is by (14).

Equality (18) gives us, by (7) that sf = f(n− 1).

Recall from [25] that for a C-system CC one defines Õb(CC) as the subset of Mor(CC) which
consists of morphisms s of the form ft(X)→ X such that l(X) > 0 and s ◦ pX = Idft(X).

Lemma 5.6 [2015.08.24.l1] Let f : m̂→ n̂ and let s : n̂→ n̂+ 1 be an element of Õb. Then one
has

f∗(s) = (xm0 , . . . , x
m
m−1, ρ(f)(s(n)))

Proof: The fact that the first m terms of the sequence representation of fs = f∗(s) have the
required form follows from Lemma 5.4. It remains to prove that

fs(m) = ρ(f)(s(n)) = (s ◦T f)(n)

The morphism f∗(s), as a morphism over m̂ is defined by the equation

f∗(s) ◦C q(f, n̂+ 1) = f ◦C s

which is equivalent, by Lemma 5.2, to qq(f) ◦T fs = s ◦T f . Therefore

(s ◦T f)(n) = (qq(f) ◦T fs)(n) = ρ(fs)(qq(f)(n)) = ρ(fs)(xm+1
m ) = ρ(fs)(η(m+ 1)(m)) =

(η(m+ 1) ◦ ρ(fs))(m) = fs(m).

The lemma is proved.
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Lemma 5.7 [2015.08.29.l1] Let f : m̂ → n̂ and let s : n̂+ i → ̂n+ i+ 1 be an element of Õb.
Then one has

[2015.08.29.eq1]f∗(s) = (xm+i
0 , . . . , xm+i

m+i−1, ρ(qqi(f))(s(n+ i))) (19)

Proof: The morphisms involved in the proof can be seen on the following diagram

m̂+ i
qqi(f)−−−→ n̂+ i

f∗(s)

y ys

̂m+ i+ 1
qqi+1(f)−−−−−→ ̂n+ i+ 1

pm+i+1,i+1

y ypn+i+1,i+1

m̂
f−−−→ n̂

The morphism s is a morphism from Id
n̂+i

to p
n̂+i+1

over n̂+ i. Therefore, we may apply Lemma
2.2 obtaining the equality

f∗(s) = (qqi(f))∗(s)

On the other hand by Lemma 5.6 we have

qqi(f)∗(s) = (xm+i
0 , . . . , xm+i

m+i−1, ρ(qqi(f))(s(n+ i))).

The lemma is proved.

Another operation that we would like to have an explicit form of is operation δ. For a C-system
CC and an object Γ in CC one defines δΓ : Γ→ p∗Γ(Γ) as the unique morphism over Γ such that

[2015.08.24.eq10]δΓ ◦ q(pΓ,Γ) = IdΓ (20)

Lemma 5.8 [2015.08.24.l5] In C(RR) one has:

δn̂ = (xn0 , . . . , x
n
n−1, x

n
n−1)

Proof: In view of Lemma 5.4, we have δn = (xn0 , . . . , x
n
n−1, dn) for some dn ∈ RR(n). By Lemma

5.2 and Lemma 4.13 we have

q(pΓ,Γ) = qq(ι1n−1) = ∂n−1
n = (xn+1

0 , . . . , xn+1
n−2, x

n+1
n )

and the defining equation (20) gives us

(xn0 , . . . , x
n
n−1, dn) ◦ (xn+1

0 , . . . , xn+1
n−2, x

n+1
n ) = (xn0 , . . . , x

n
n−1)

i.e.,
(xn+1

0 , . . . , xn+1
n−2, x

n+1
n ) ◦T (xn0 , . . . , x

n
n−1, dn) = (xn0 , . . . , x

n
n−1)

applying Lemma 4.9 and comparing the last terms of the sequences we get

ρ(xn0 , . . . , x
n
n−1, dn)(xn+1

n ) = xnn−1

and by (7) the left hand side equals dn. The lemma is proved.
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Problem 5.9 To construct a bijection

[2015.08.24.eq9]mbRR : Õb(C(RR))→ qn∈NRR(n) (21)

Construction 5.10 [2015.08.22.constr3] For s : n̂→ n̂+ 1 define

mbRR(s) = (n, s(n))

To show that this is a bijection let us construct the inverse bijection. For n ∈ N and o ∈ RR(n)
set

mb!RR(n, o) = (xn0 , . . . , x
n
n−1, o)

The fact that these functions are mutually inverse follows easily from Lemma 5.4.

Our next goal is to describe operations T ′, T̃ ′, S′, S̃′ and δ′ obtained from operations T , T̃ , S,
S̃ and δ that were introduced at the end of Section 3 in [25] through transport by means of the
bijection (21).

Let us first recall the definition of operations T , T̃ , S, S̃ and δ associated with a general C-system
CC.

Definition 5.11 [2015.08.26.def1] Let CC be a C-system. We will write Ob for Ob(CC) and

Õb for Õb(CC).

1. Operation T is defined on the set

Tdom = {Γ,Γ′ ∈ Ob | l(Γ) > 0 and Γ′ > ft(Γ)}

and takes values in Ob. For (Γ,Γ′) ∈ Tdom one defines

T (Γ,Γ′) = p∗Γ(Γ′)

2. Operation T̃ is defined on the set

T̃dom = {Γ ∈ Ob, s ∈ Õb | l(Γ) > 0 and ∂(s) > ft(Γ)}

and takes values in Õb. For (Γ, s) ∈ T̃dom one defines

T̃ (Γ, s) = p∗Γ(s)

3. Operation S is defined on the set

Sdom = {r ∈ Õb,Γ ∈ Ob |Γ > ∂(r)}

and takes values in Ob. For (r,Γ) ∈ Sdom one defines

S(r,Γ) = r∗(Γ)

4. Operation S̃ is defined on the set

S̃dom = {r, s ∈ Õb | ∂(s) > ∂(r)}

and takes values in Õb. For (r, s) ∈ S̃dom one defines

S(r, s) = r∗(s)
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5. Operation δ is defined on the set

δdom = {Γ ∈ Ob | l(Γ) > 0}

and takes values in Õb. For Γ ∈ δdom one defines δ(Γ) as the unique morphism Γ → p∗Γ(Γ)
over Γ such that

δΓ ◦ q(pΓ,Γ) = IdΓ

Define, for any Jf -relative monad RR operations θm,n = θRR
m,n such that for m,n ∈ N, n > m and

r ∈ RR(m), s ∈ RR(n) one has

[2015.09.07.eq1]θm,n(r, s) = ρ(qqn−m−1(xm0 , . . . , x
m
m−1, r))(s) =

ρ(xn−1
0 , . . . , xn−1

m−1, ι
n−m−1
m (r), xn−1

m , . . . , xn−1
n−2)(s) (22)

Theorem 5.12 [2015.08.26.th1] Let Ob = Ob(C(RR)) and let Õb
′

be the right hand side of
(21). One has:

1. Operation T ′ is defined on the set

T ′dom = {m̂, n̂ ∈ Ob |m > 0 and n > m− 1}

and is given by
T ′(m̂, n̂) = n̂+ 1

2. Operation T̃ ′ is defined on the set

T̃ ′dom = {m̂ ∈ Ob, (n, s) ∈ Õb
′
|m > 0 and n+ 1 > m− 1}

and is given by
T̃ ′(m̂, (n, s)) = (n+ 1, ∂m−1

n (s))

3. Operation S′ is defined on the set

S′dom = {(m, r) ∈ Õb
′
, n̂ ∈ Ob |n > m+ 1}

and is given by
S′((m, r), n̂) = n̂− 1

4. Operation S̃′ is defined on the set

S̃′dom = {(m, r) ∈ Õb
′
, (n, s) ∈ Õb

′
|n > m}

and is given by
S̃′((m, r), (n, s)) = θm,n(r, s)

5. Operation δ′ is defined on the subset

δ′dom = {n̂ ∈ Ob |n > 0}

and is given by
δ′(n̂) = (n, xnn−1)

24



Proof: We have:

1. Operation T ′ is the same as operation T for C(RR) since Õb is not involved in it. The form
of T ′dom is obtained by unfolding definitions and the formula for the operation itself follows
from Lemma 5.3(2).

2. Operation T̃ ′ is defined on the set of pairs (m̂ ∈ Ob, (n, s) ∈ Õb
′
) such that m > 0 and

∂(mb!RR(n, s)) > m − 1. Since ∂(mb!RR(n, s)) = n + 1 we obtain the required domain of
definition. The formula by the operation itself is obtained immediately by combining Lemma
5.7 and Lemma 4.13.

3. Operation S′ is defined on the set of pairs ((m, r) ∈ Õb
′
, n̂ ∈ Ob) such that n > ∂(mb!RR(m, r)).

Since ∂(mb!RR(m, r)) = m+ 1 we obtained the required domain of definition. The operation
itself is given by

S′((m, r), n) = (mb!RR(m, r))∗(n̂) = (xm0 , . . . , x
m
m−1, r)

∗(n̂) = ̂n+m− (m+ 1) = n̂− 1

4. Operation S̃′ is defined on the set of pairs (m, r), (n, s) ∈ Õb
′

such that ∂(mb!RR(n, s)) >
∂(mb!RR(m, r)) which is equivalent to n > m. The formula for the operation itself is obtained
immediately by combining Lemma 5.7 with i = n−m− 1 and Lemma 4.14.

5. Operation δ′ is defined on the subset n̂ ∈ Ob such that n > 0 and is given by

δ′(n̂) = mbRR(δ(n̂)) = mbRR((xn0 , . . . , x
n
n−1, x

n
n−1)) = (n, xnn−1)

The theorem is proved.

Remark 5.13 [2015.08.29.rem2] Conjecturally, a C-system can be reconstructed (up to an iso-

morphism) from the sets Ob and Õb equipped by operations T, T̃ , S, S̃ and δ. Combining this
consjecture with Theorem 5.12 we conclude that the C-system C(RR) and, therefore, the relative
monad RR, can be reconstructed from the sets RR(n) with distinguished elements xni and equipped
with operations ∂in and θm,n : RR(m)×RR(n)→ RR(n− 1) for n > m.

Using Remark 4.7 this can be compared with the assertion of [7, Theorem 3.3] that the category of
abstract clones is equivalent to the category of substitution systems of [7, Definition 3.1]. In such
a comparison the operation ζ of substitution systems of the form RR(n+ 1)×RR(n)→ RR(n) is
the same as the operation (s, r) 7→ θn,n+1(r, s).

Remark 5.14 [2015.08.29.rem1] Let lRR be the disjoint union of RR(n) for all n. Then we can
sum up all of the operations that we need to consider as follows:

1. a function l : lRR→ N,

2. a function η : N→ lRR that takes n to xn0 = η(n)(0),

3. a function ∂ : {r ∈ lRR, i ∈ N | l(r) ≥ i} → lRR,

4. a function θ : {r, s ∈ lRR, | l(r) > l(s)} → lRR,

such that
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1. for all n ∈ N, l(η(n)) = n+ 1,

2. for all r ∈ lRR, i ∈ N such that l(r) ≥ i, l(∂(r, i)) = l(r) + 1,

3. for all r, s ∈ lRR such that l(s) > l(r) one has l(σ(r, s)) = l(s)− 1.

It should be possible to describe, by a collection of further axioms on these operations, a full
subcategory in the category whose objects are sets lRR with operations of the form l, η, ∂ and θ
that is equivalent to the category of Jf-relative monads or, equivalently, the category of Lawvere
theories or Fiore-Plotkin-Turi substitution algebras.

Remark 5.15 [2015.08.29.rem1b] It seems at first unclear why it should be possible to realize
the action of the symmetric group on RR(n) using operations of Remark 5.13 since they all seem
to respect, in some sense, the linear ordering of the sets stn(n).

In the substitution notation of Remark 6.1, given r in RR(m) and E in RR(n),

θm,n(r, E) = E[r/xm, xm/xm+1, . . . , xn−2/xn−1],

i.e., the operation θm,n corresponds to the substitution of an expression in variables x0, . . . , xm−1

for the variable xm in an expression in variables x0, . . . , xn followed by a downshift of the indexes
of the variables with the higher index.

The operation ∂in and the constants xn := xn+1
n are similarly defined in terms of linear orderings.

To see how it is, nevertheless, possible to realize, for example, the permutation of x0 and x1 consider
the following. First let, for all i, n ∈ N,

ιin = ∂n+i−1
n+i−1 ◦ . . . ◦ ∂

n
n : RR(n)→ RR(n+ i)

Then define for all i, n ∈ N, n ≥ i+ 1 an element xni ∈ RR(n) by the formula

xni = ιn−i−1
i+1 (xi)

such that, in particular, xn+1
n = xn.

Define now a function ψ : RR(2)→ RR(2) by the formula

ψ = ∂0
2 ◦ ∂0

3 ◦ θ3,4(x3
0,−) ◦ θ2,3(x2

1,−)

One can verify that for any Jf -relative monad RR, ψ = σ where σ is the permutation of 0 and 1
in stn(2).

In the substitution notation this can be seen as follows:

ψ(E(x2
0, x

2
1)) = θ2,3(x2

1, θ3,4(x3
0, ∂

0
3(∂0

2(E(x2
0, x

2
1))))) = θ2,3(x2

1, θ3,4(x3
0, ∂

0
3(E(x3

1, x
3
2)))) =

θ2,3(x2
1, θ3,4(x3

0, E(x4
2, x

4
3))) = θ2,3(x2

1, E(x3
2, x

3
0)) = E(x2

1, x
2
0)

6 The C-system C(RR,LM).

Let (left) modules over relative monads were introduced in [1, Definition 9]. One can observe by
direct comparison of unfolded definitions that there is a bijection between the set of modules over
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a relative monad RR with values in a category E and the set of functors from the Kleisli category
K(RR) of RR introduced in [4, p.8] (see also [24, Constr. 2.9]) to E. Whether this bijection is
the identity bijection or not depends on how the expressions such as “collection of data” or “family
of functions” are translated into the formal constructions of set theory. We assume that they have
been translated in a such a way that this bijection is the identity and left modules over RR with
values in E are actually and precisely the same as (covariant) functors from K(RR) to E.

In this paper we are interested in the Jf -relative monads RR. The corresponding Kleisli categories
are the categories opposite to the categories C(RR) underlying the C-systems considered above.
Therefore, left modules over a Jf-monad RR with values in Sets(U) are the U -presheaves on
C(RR), i.e., the contravariant functors from C(RR) to Sets(U).

Let LM = (LM,LMMor) be such a presheaf.

The morphism component LMMor of LM is a function that sends a morphism f from m̂ to n̂
in C(RR) to a function LMMor(f) ∈ Fun(LM(n̂), LM(m̂)), i.e., we have for each m,n ∈ N a
function

R(n,m)→ Fun(LM(n̂), LM(m̂))

We will use this function as a coercion so that, for f ∈ RR(n,m) and E ∈ LM(n̂) the expression
f(E) is assumed to be expanded into LMMor(f)(E) when needed.

Remark 6.1 [2015.08.18.rem1] If we think of E ∈ LM(n̂) as of an expression in variables
0, . . . , n − 1 then the action of RR(n,m) on LM(n̂) can be thought of as the substitution. This
analogy can be used to introduce the notation when for f = (f(0), . . . , f(n− 1)) ∈ RR(n,m) and
E ∈ LM(n̂) one writes f(E) as

f(E) = E[f(0)/0, . . . , f(n− 1)/n− 1]

For example, in this notation we have

∂in(E) = E[0/0, . . . , i− 1/i− 1, i+ 1/i, . . . , n/n− 1]

Similarly, for E ∈ LM(n̂+ 2) one has

σin(E) = E[0/0, . . . , i/i, i/i+ 1, . . . , n/n+ 1]

and ιin(E) is “the same expression” but considered as an expression of n+ i variables.

Example 6.2 [2015.09.07.rem3] An important example of LM is given by the functor defined
on objects by n̂ 7→ RR(n) and on morphisms by

f 7→ (s 7→ ρ(f)(s))

for f : m̂ → n̂ and s ∈ RR(n). We will denote this functor by the same symbol RR as the
underlying Jf-relative monad.

This functor is isomorphic to the (contravariant) functor represented by the object 1̂ but it is
not equal to this functor since the set of elements of the form ((n̂, 1̂), r′) where r′ ∈ RR(1, n) is
isomorphic but not equal to the set RR(n).
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Let C(RR,LM) = C(RR)[LM] be the LM-extension of the C-system C(RR). The role of these
C-systems in the theory of type theories is that the term C-systems of the raw syntax of dependent
type theories are of this form and therefore the term C-systems of dependent type theories are
regular sub-quotients of such C-systems and can be studied using the description of the regular
sub-quotients given in [25].

By construction,
Ob(C(RR,LM)) = qn∈NObn(RR,LM)

where
Obn(RR,LM) = LM(0̂)× . . .× LM(n̂− 1)

and therefore objects of C(RR,LM) are pairs of the form (n,Γ) where Γ is a sequence (T0, . . . , Tn−1)
where Ti ∈ LM (̂i). We will sometimes omit n from our notation since it can be recovered
from Γ. Similarly, while the morphisms of C(RR,LM) are given by iterated pairs of the form
(((m,Γ), (n,Γ′)), ((m̂, n̂), f)) where f ∈ RR(n,m) we will sometimes write them as f : (m,Γ) →
(n,Γ′) or f : Γ→ Γ′ or even just as f .

Let us also recall that for two objects X = (m, (T0, . . . , Tm−1))) and Y = (n+ 1, (T ′0, . . . , T
′
n)) and

a morphism f : X → ft(Y ) the object f∗(Y ) is given by the formula

[2015.09.09.eq3old]f∗(Y ) = (m+ 1, (T0, . . . , Tm−1, f(T ′n))) (23)

and the morphism q(f, Y ) : f∗(Y )→ Y by the formula q(f, Y ) = qq(f).

Lemma 6.3 [2015.08.26.l8] Let X = (n, (T0, . . . , Tn−1)) and Y = (m, (T0, . . . , Tm−2, T )) where
n > m− 1. Then one has

p∗Y (X) = (n+ 1, (T0, . . . , Tm−2, T, ∂
m−1
m−1(Tm−1), . . . , ∂m−1

n−1 (Tn−1)))

Proof: By Lemma 3.9 one has

p∗Y (X) = (n+1, (T0, . . . , Tm−2, T,LM(q(pm̂, m̂− 1, 0))(Tm−1), . . . ,LM(q(pm̂, n̂− 1, n−m))(Tn−1)))

Since q(pm̂,m − 1 + i, i) = qqi(L(ι1m−1)) = ∂m−1
m−1+i, where the second equality is by Lemma 4.13,

we get that in our notations that omit LM we have:

p∗Y (X) = (n+ 1, (T0, . . . , Tm−2, T, ∂
m−1
m−1(Tm−1), . . . , ∂m−1

n−1 (Tn−1))).

Lemma 6.4 [2015.08.22.l5] A morphism f : X → Y , where l(Y ) = n + 1 and f ∈ R(n + 1, n)

belongs to Õb(C(RR,LM)) if and only if X = ft(Y ) and f(i) = xni for i = 0, . . . , n− 1.

Proof: It follows immediately from Lemma 4.11.

The following analog of Lemma 5.5 for the C-system C(RR,LM) provides us with the explicit
form of the operation f 7→ sf .

Lemma 6.5 [2015.09.09.l2] Let f : X → Y , f = (f(0), . . . , f(n − 1)) where n > 0. Then
sf : X → (ft(f))∗(Y ),

[2015.09.09.eq1]sf = (xm0 , . . . , x
m
m−1, f(n− 1)) (24)

where ft(f) = f ◦ pY and m = l(X).
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Proof: By definition sf is a morphism from X to (ft(f))∗(Y ). Therefore it is sufficient to show that
the left hand side of (24) agrees with the right hand side after application of the homomorphism
trLM and our goal follows from Lemma 5.5.

Lemma 6.6 [2015.09.03.l1] For i > 0, f : X → fti(Y ) and s : ft(Y ) → Y in Õb(C(RR,LM))
one has s : f∗(ft(Y ))→ f∗(Y ),

f∗(s) = (xm+i−1
0 , . . . , xm+i−1

m+i−2, ρ(qqi−1(f))(s(n+ i− 1)))

where m = l(Γ′) and n = l(Γ).

Proof: Since trLM is fully faithful, it is sufficient, in order to verify the equality of two morphisms
to verify that their domain and codomain are equal and that their images under trLM are equal.
For the domain and codomain it follows from the definition of f∗ on morphisms. For the images
under trLM it follows from the fact that trLM is a homomorphism of C-systems, Lemma 2.3(4) and
Lemma 5.7.

Problem 6.7 [2015.08.22.prob1] To construct a bijection

[2009.10.15.eq2]mbRR,LM : Õb(C(RR,LM))→
∐
n∈N

Obn+1(RR,LM)×R(n) (25)

Construction 6.8 [2015.08.22.constr1] [2014.06.30.l2] Let s ∈ Õb(C(RR,LM)). Then s :
ft(X)→ X, s ∈ R(n, n+ 1) and X = (n+ 1,Γ). We set:

mbRR,LM(s) = (n, (Γ, s(n)))

To show that this is a bijection let us construct an inverse. For n ∈ N, Γ ∈ Obn+1(RR,LM) and
o ∈ R(n) let

mb!RR,LM(n, (Γ, o)) = ((ft((n+ 1,Γ)), (n+ 1,Γ)), (xn0 , . . . , x
n
n−1, o))

This is a morphism from ft(X) to X where X = (n+1,Γ). The equation mb!RR,LM(n, (Γ, o))◦pX =
Idft(X) follows from Lemma 6.4.

Let us show now thatmbRR,LM andmb!RR,LM are mutually inverse bijections. Let s ∈ Õb(C(RR,LM))
be as above, then:

mb!RR,LM(mbRR,LM(s)) = mb!RR,LM(n, (Γ, s(n))) = ((ft(X), X), (xn0 , . . . , x
n
n−1, s(n))) = s

where the last equality follows from the assumption that s ∈ Õb and Lemma 6.4.

On the other hand for Γ ∈ Obn+1(RR,LM) and o ∈ R(n) we have

mbRR,LM(mb!RR,LM(n, (Γ, o))) = mbRR,LM(ft((n+ 1,Γ)), ((n+ 1,Γ), (xn0 , . . . , x
n
n−1, o))) =

(n, (Γ, o))

This completes Construction 6.8.
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Lemma 6.9 [2015.09.09.l3] Let f : X → Y , f = (f(0), . . . , f(n−1)) where X = (m, (T0, . . . , Tm−1)),
Y = (n, (T ′0, . . . , T

′
n−1)). Then one has

mbRR,LM(sf ) = (m, ((T0, . . . , Tm−1, (f(0), . . . , f(n− 2))(T ′n−1)), f(n− 1)))

Proof: It follows immediately from Lemma 6.5 and the formula for mbRR,LM.

Consider operations T ′, T̃ ′, S′, S̃′ and δ′ obtained by transport by means of the bijection of Con-
struction 6.8 from the operations T , T̃ , S and S̃ and δ corresponding to the C-system C(RR,LM)
(cf. Definition 5.11). Let us give an explicit description of these operations.

Recall that we defined, for any Jf -relative monad RR, operations

θRR
m,n : RR(m)×RR(n)→ RR(n− 1)

For LM as above and n > m define an operation θLMm,n of the form

θLMm,n : RR(m)× LM(n)→ LM(n− 1)

by the formula

[2015.09.07.eq2]θLMm,n(r, E) = (qqn−m−1(xm0 , . . . , x
m
m−1, r))(E) =

(xn−1
0 , . . . , xn−1

m−1, ι
n−m−1
m (r), xn−1

m , . . . , xn−1
n−2)(E) (26)

where the second equality is the equality of Lemma 4.14. As in the case of θRR
m,n we will often write

θm,n instead of θLMm,n since the whether we consider θRR or θLM can be inferred from the type of
the arguments.

Theorem 6.10 [2015.08.26.th2] Let Ob = Ob(C(RR,LM)) and let Õb
′
= Õb

′
(RR,LM) be the

right hand side of (25). One has:

1. Operation T ′ is defined on the set T ′dom of pairs (m,Γ), (n,Γ′) ∈ Ob where Γ = (T0, . . . , Tm−1),
Γ′ = (T ′0, . . . , T

′
n−1) such that m > 0, n > m − 1 and Ti = T ′i for i = 0, . . . ,m − 2. It takes

values in Ob and is given by
T ((m,Γ), (n,Γ′)) =

(n+ 1, (T0, . . . , Tm−2, Tm−1, ∂
m−1
m−1(T ′m−1), . . . , ∂m−1

n−1 (T ′n−1)))

2. Operation T̃ ′ is defined on the set T̃ ′dom of pairs (m,Γ) ∈ Ob, (n, (Γ′, s)) ∈ Õb
′

where Γ =
(T0, . . . , Tm−1), Γ′ = (T ′0, . . . , T

′
n−1) such that m > 0, n + 1 > m − 1 and Ti = T ′i for

i = 0, . . . ,m− 2. It takes values in Õb′ and is given by

T̃ ′((m,Γ), (n, (Γ′, s))) = (n+ 1, (T ((m,Γ), (n,Γ′)), ∂m−1
n (s)))

3. Operation S′ is defined on the set of pairs (m, (Γ, r)) ∈ Õb
′
, (n,Γ′) ∈ Ob where Γ =

(T0, . . . , Tm), Γ′ = (T ′0, . . . , T
′
n−1) such that n > m + 1 and Ti = T ′i for i = 0, . . . ,m. It

takes values in the set Ob and is given by

S′((m, (Γ, r)), (n,Γ′)) =

(n− 1, (T ′0, . . . , T
′
m−1, θm,m+1(r, T ′m+1), θm,m+2(r, T ′m+2), . . . , θm,n−1(r, T ′n−1)))
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4. Operation S̃′ is defined on the set of pairs (m, (Γ, r)) ∈ Õb
′
, (n, (Γ′, s)) ∈ Õb

′
where Γ =

(T0, . . . , Tm), Γ′ = (T ′0, . . . , T
′
n) such that n > m and Ti = T ′i for i = 0, . . . ,m. It takes values

in Õb
′

and is given by

S̃′((m, (Γ, r)), (n, (Γ′, s))) = (n− 1, (S′((m, (Γ, r)), (n+ 1,Γ′))), θm,n(r, s))

5. Operation δ′ is defined on the subset of (m,Γ) in Ob such that m > 0. It takes values in Õb
′

and is given by
δ′((m,Γ)) = (m, (T ((m,Γ), (m,Γ)), xmm−1))

Proof: In the proof we will write mb and mb! instead of mbRR,LM and mb!RR,LM. We have:

1. Operation T ′ is the same as operation T for C(RR,LM) since Õb is not involved in it. The
form of T ′dom is obtained by unfolding definitions.

The operation itself is given by

T ′((m,Γ), (n,Γ′)) = p∗(m,Γ)((n,Γ
′)) =

(m, (T0, . . . , Tm−1, ∂
m−1
m−1(T ′m−1), . . . , ∂m−1

n−1 (T ′n−1)))

where the first equality is by Definition 5.11(1) and the second by Lemma 6.3.

2. Operation T̃ ′ is defined on the set of pairs (m,Γ) ∈ Ob, (n, (Γ′, s)) ∈ Õb
′

such that m > 0

and ∂(mb!(n, (Γ′, s))) > ft(m,Γ) and takes values in Õb
′
. Since ∂(mb!(n, (Γ′, s)) = (n+ 1,Γ′)

we obtain the required domain by unfolding definitions.

To verify the formula for the operation itself consider the equalities:

T̃ ′((m,Γ), (n, (Γ′, s))) = mb(p∗(m,Γ)(mb
!(n, (Γ′, s)))) =

mb(p∗(m,Γ)((ft((n+ 1,Γ′)), ((n+ 1,Γ′), (xn0 , . . . , x
n
n−1, s)))))

where the first equality is by Definition 5.11(2). By Lemma 6.6 we can extend these equalities
as follows:

mb(p∗(m,Γ)((ft((n+ 1,Γ′)), ((n+ 1,Γ′), (xn0 , . . . , x
n
n−1, s))))) =

mb(p∗X(ft(Y )), (p∗X(Y ), (xn+1
0 , . . . , xn+1

n , (qqn−m+1(ι1m−1))(s)))) =

(n+ 1, (p∗X(Y ), ∂m−1
n (s))) = (n+ 1, (T ((m,Γ), (n+ 1,Γ′)), ∂m−1

n (s)))

where X = (m,Γ), Y = (n+ 1,Γ′), the first equality is by Lemma 6.6, the second by Lemma
4.13 and the third by Definition 5.11(1).

3. Operation S′ is defined on the set of pairs ((m, (Γ, r)) ∈ Õb
′
, (n,Γ′) ∈ Ob) such that (n,Γ′) >

∂(mb!(m, (Γ, r))) and takes values in Ob. Since ∂(mb!(m, (Γ, r))) = (m + 1,Γ) we obtained
the required domain of definition. The operation itself is given by

[2016.01.21.eq2]S′((m, (Γ, r)), (n,Γ′)) = (mb!((m, (Γ, r))))∗((n,Γ′)) (27)

Next we have
(mb!((m, (Γ, r))))∗((n,Γ′)) =
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(ft(X), X), (xm0 , . . . , x
m
m−1, r)))

∗(Y ) = (ft(X), X), (xm0 , . . . , x
m
m−1, r)))

∗(Y, i)

where X = (m + 1,Γ), Y = (n,Γ′) and i = n −m − 1. By Lemma 3.9 we can extend this
equality as follows:

(n− 1, (T0, . . . , Tm−1, rr(T
′
m+1), qq(rr)(T ′m+2), . . . , qqn−m−2(rr)(T ′n−1))) =

(n− 1, (T ′0, . . . , T
′
m−1, rr(T

′
m+1), qq(rr)(T ′m+2), . . . , qqn−m−2(rr)(T ′n−1)))

where rr = (xm0 , . . . , x
m
m−1, r) and the second equality holds by our assumption that Ti = T ′i

for i = 0, . . . ,m. The required formula follows from the equality

qqj(rr)(T ′m+j+1) = θm,m+j+1(r, T ′m+j+1)

4. Operation S̃′ is defined on the set of pairs (m, (Γ, r)) ∈ Õb
′
, (n, (Γ′, s)) ∈ Õb

′
such that

[2016.01.21.eq1]∂(mb!((n, (Γ′, s)))) > ∂(mb!(m, (Γ, r))) (28)

and takes values in Õb
′
. The inequality (28) is equivalent to

(n+ 1,Γ′) > (m+ 1,Γ)

which is, in turn, equivalent to the conditions in the theorem. In the computation below let
us sometimes abbreviate ((X,Y ), f) to f . Let

rr = (xm0 , . . . , x
m
m−1, r)

ss = (xn0 , . . . , x
n
n−1, s)

Then the operation itself is given by:

S̃′((m, (Γ, r)), (n, (Γ′, s))) = mb((mb!(m, (Γ, r)))∗(mb!((n, (Γ′, s))))) = mb(rr∗ss) =

mb((xn−1
0 , . . . , xn−1

n−2, (qq
n−m−1(rr))(s))) = (n− 1, (rr∗((n+ 1,Γ′)), (qqn−m−1(rr))(s))) =

(n− 1, (S′((m, (Γ, r)), (n+ 1,Γ′))), θm,n(r, s))

where the third equality is by Lemma 6.6 and the fifth by (27) and the definition of θm,n(r, s).

5. Operation δ′ is defined on the subset (m,Γ) ∈ Ob such that m > 0 and is given by

δ′((m,Γ)) = mb(δ((m,Γ)))

Therefore it is sufficient to show that

δ((m,Γ)) = (((m,Γ), p∗(m,Γ)((m,Γ))), (xm0 , . . . , x
m
m−1, x

m
m−1))

By Definition 5.11(5), δ((m,Γ)) is a morphism from (m,Γ) to p∗(m,Γ)((m,Γ)). Therefore, since
trLM is a fully faithful functor it is sufficient to show that

trLM(δ((m,Γ))) = ((m̂, m̂+ 1), (xm0 , . . . , x
m
m−1, x

m
m−1))

which follows from Lemma 2.3(5) and Lemma 5.8.
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Remark 6.11 [2015.09.13.rem1] Given an Jf-relative monad RR in the form lRR = (lR, l, η, ∂, θ)
of Remark 5.14 we can define a left l-module lLM over RR as a quadruple:

1. a set lLM ,

2. a function l : lLM → N,

3. a function ∂ : {E ∈ lLM, i ∈ N | lLM(E) ≥ i} → lLM ,

4. a function
θLM : {r ∈ lR,E ∈ lLM | lLM(E) > lRR(r)} → lLM

where operations l, ∂ and θLM satisfy some conditions.

Once these conditions are properly established the category of such pairs (lRR, lLM) should be
equivalent to the Hirschowitz-Maggesi “large module category” category (see [10, Definition 2.9])
and in particular the systems of expressions associated with binding signatures can be described
as universal objects carrying some additional operations in this category.

Let us emphasize again that the main reason to consider these l-versions of the main constructions
of this paper is that they should be easier to formalize in systems without dependent types such as
HOL or ZF.
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